Conditions necessary for steady Interference Pattern

>> The two sources of light should be coherent : Coherent means having a constant phase difference between them at all times. Best achievable by deriving the two sources from a single source
>>The two sources must be monochromatic : The position as well as width of the fringes depends on wavelength of light. Hence fringes with different colours will not be coinciding.
>> The two interfering wave must have same amplitude : Only then will the dark be of zero intensity
>> The separation between the two slits must be small in comparison to the distance between the slits and the screen
>> The two slits should be narrow : else will cause blurring
>> The two waves should be in the same state of polarization
Youngs Double Slit Experiment:

S1 and S2 are two coherent source (same frequency and constant phase difference at all times) equidistant from S . Where crest meets crest or trough meets trough and we observe high intensity bright fringe. Where a crest of one coincides with trough of the other we get dark fringe on the screen PQ. We get alternate dark and bright fringes called interference pattern

Analytical Study

d: distance between the slits
D: distance between slit and screen
At O^{\prime} distance travelled by the secondary wavelets from S1 and S2 is equal, hence O^{\prime} is a central bright fringe.
Now consider a point P on the screen.
$\left(S_{2} P\right)^{2}=D^{2}+(y+d / 2)^{2}$
$\left(S_{1} P\right)^{2}=D^{2}+(y-d / 2)^{2}$
Thus $\left(S_{2} P\right)^{2}-\left(S_{1} P\right)^{2}=2 y d$

Therefore, $\left(S_{2} P-S_{1} P\right)\left(S_{2} P+S_{1} P\right)=2 y d$
since $d \ll D$, we assume $S_{2} P=S_{1} P \approx D$
Thus, path difference $\Delta p=S_{2} P-S_{1} P=2 y d / 2 D=y d / D$
For constructive interference, $\Delta p=n \lambda$ $y d / D=n \lambda$, Thus $y=n \lambda D / d$ for $n=0,1,2,3 \ldots$.
For destructive interference, $\Delta p=(2 n-1) \lambda / 2$
$y d / D=(2 n-1) \lambda / 2$, Thus $y=(2 n-1) \lambda D / 2 d$ for $n=1,2,3 \ldots .$.
Fringe Width = distance between two consecutive bright bands or two consecutive darks bands $=\lambda \mathrm{D} / \mathrm{d}$
Thus, both dark and bright fringes are of equal width and are alternately placed on both sides of the central bright band

Methods of obtaining the two coherent source:

Lloyd's mirror: A light source is made to fall at a grazing angle on a plane mirror.

Some light falls directly on the screen while some reflects before hitting the screen. The reflected light appears to come from a virtual source. Since it derived from the same source, the two source are coherent.

Fresnel biprism:

Vertex angle nearly 180°. Very small refracting angle of 30^{\prime} to 1° with the base. The refracting edge parallel to the slits. The biprism produces S_{1} and S_{2} as the two virtual sources from the same source S, hence they both are coherent.

INCOMPLETE NOTES
DIFFRACTION YET TO COME

